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ABSTRACT 

A new physical effect is described for the behaviour of magnetically (electrically) aniso- 
tropic objects in an alternating external field. These objects (large molecules or clusters of 
molecules in solutions) acquire an induced moment in a direction different from that of the 
field. The resulting driving force is the cause of periodic vibrations and rotations as well as of 
chaotic motion. Only objects of special size confined from above and below are able to 
execute non-damped motion and to transfer energy from an external field to the medium. 
The statistical properties of the linearized equation of motion are analyzed in detail. It turns 
out that the peculiarities of the mechanical motion manifest themselves also in the statistical 
description. 

For a long time I have been aware of the results of the following very 
peculiar qualitative experiment [l]. The electromagnetic absorption at acous- 
tic frequencies has been observed throughout the melting and crystallization 
of benzene. This absorption was observed only during the phase transforma- 
tion process rather than in the solid or liquid phases. In an attempt to 
explain the amazing results of this experiment, I focussed my attention on 
the distinctive anisotropy of the benzene molecule which pertains to solid 
benzene as well. In fact, the m-electrons in the six-ring molecule of benzene 
are able to move in an external magnetic field almost exclusively in the 
plane of the rings rather than in the direction perpendicular to the plane. 
Accordingly, the diamagnetic susceptibility x, which describes the magnetic 
moment M, (i = 1, 2, 3) induced in the external field F,, M, = x, F,, is very 
anisotropic. That is, Ax = x I -x,, is very large, which in fact serves as the 
clue to an explanation of the experiment described above. 

In isotropic systems an induced magnetic (dielectric) moment appears due 
to the induction law in the direction opposite to that of an external field. 
However, anisotropic systems in an external field acquire an induced mo- 
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ment of direction different, in general, from that of a field. In benzene, for 
instance, the induced moment will be directed perpendicular to the six-ring 
plane, irrespective of the direction of an external field. In an effort to 
decrease the interaction energy, the system will start to rotate. However, by 
the time the induced moment reaches the direction antiparallel to the field, 
the external (alternating) field may, in turn, change its direction, and the 
system will continue to rotate in order to reach a new energetically favoura- 
ble position, and so on. Hence, for an alternating external field and a 
dissipative medium, this should lead, under certain conditions, to the peri- 
odic rotations of a system thereby transferring the energy of an external 
field to the medium. Moreover, one can understand the reasons why the 
energy absorption has been observed experimentally only during the melting 
or crystallization of benzene. There is no effect in the solid phase because 
the entire system is too heavy and the huge inertia prevents rotation. On the 
other hand, in the liquid phase the individual molecules are able to follow an 
external field without any phase lag, i.e. without absorption of energy. 

Our theoretical analysis is more general than that needed for an explana- 
tion of the benzene experiment. First of all, an anisotropy is usually the rule 
rather than the exception in organic chemistry and biology. The great 
majority of dilute solutions of polymers, polymer liquid crystals, aromatic 
components, viruses, proteins, etc. contain rodlike “one-dimensional”, or 
quasi-two-dimensional molecules or clusters of molecules. Therefore, the 
suggested effect is a widely occurring phenomenon. Moreover, this effect has 
a strongly resonant character: only clusters (molecules) of special size are 
able to rotate in an external field of given frequency and amplitude. The 
resonant frequency of the external field is basically dependent on the cluster 
size. The smaller the size of clusters, the higher is the frequency of an 
external field needed for the resonance absorption. These frequencies cover 
the bright spectrum starting from a few hundred Hz for a cluster of aromatic 
compounds floating in a fluid during melting and reaching a few GHz for 
solutions of the tobacco mosaic virus about a size of a few thousand 
Angstroms. Such great sensitivity of this resonance phenomenon to the size 
of system offers many possibilities for practical applications, such as analy- 
sis of the size distribution of anisotropic objects in solution, analysis of the 
dynamics of first-order phase transitions by the measurement of the cluster 
size of aromatic components during melting and/or solidification, etc. 

After a short review of the mechanical analysis, we shall consider the 
statistical properties of an ensemble of anisotropic clusters in an alternating 
external field. 

The equation of motion describing the rotation of a cluster has the form 

where L is the angular momentum, o is the angular velocity of rotation, p 
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is the duping torque in a viscous solution, Mi = x,l’J is the magnetic 
(dielectric) moment induced by the external field F, and x is the tensor of 
the magnetic (dielectric) susceptibility. 

The usual complication with vector equations of type (1) is the existence 
of two coordinate systems, one of which is the laboratory system where the 
external field is defined, and the other being the moving coordinate system 
with the principal axes of inertia. It is just the latter system in which the 
angular momentum is related in the simplest way to the angular velocity, 
L, = &LJ,, where 1, are the principal moments of inertia. Performing some 
simple transformations, one can show [l] that the motion of a cluster which 
is assumed to be isotropic in the xy plane, 1, = 1, = I and xi = x2, is 
governed by the differential equation for the nutation angle 6’ 

d29 p d0 Ax 
dtZ -t r dt + 21 sin(28) = 0 

where Ax = x3 - x1. It is clear from eqn. (2) that the undamped motion of 
the cluster is associated with the anisotropy of the magnetic (electric) 
susceptibility Ax. 

Let P be an alternating field, F = E;b cos wt. Substituting this expression 
into eqn. (2), one obtains the non-linear ~fferenti~ equation with coeffi- 
cients periodic in time, which allows only numerical solutions. However, 
some general properties of solutions of eqn. (2) can be found by making the 
linear approximation sin 28 = 28. Then, eqn. (2) takes the form of the 
damped Mathieu equation [3] (with dimensionless time T = wt) 

where 

.=2,=!!$ (4) 
Depending on the values of the parameters a, b and /3/1~, solutions of 

the Mathieu equation (3) can be damped, periodic or divergent. Figure 1, 
which is plotted in coordinates a and b, shows all possible solutions of eqn. 
(3). The solid lines correspond to periodic solutions which separate regions 
of damped and divergent solutions for the undamped Mathieu equation to 
which eqn. (3) reduces when ,i3 = 0. When friction is taken into account, the 
instability regions shrink and shift upward. The instability regions for p # 0 
are shown by the shading in Fig. 1. The ad~tion~ constraint (4) on the 
Mathieu equation (3) means that the periodic solutions are defined by the 
intersection of the solid lines in Fig. 1 with the straight line a = 2b. The 
number of intersections is finite since the solid lines shift upward with 
increasing a. Therefore, the linearized eqn. (2) has a finite number of 
periodic solutions restricted from both sides by amin or amax, i.e. for a given 
substance and a given field, by iti, and I,,,,,. In other words, only clusters 
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Fig. 1. Different types of solutions of the Mathieu equation plotted in the plane of the 
parameters a and b. The solid lines correspond to periodic solutions dividing the ranges of 
damped and divergent solutions. The shaded areas show the instability regions when friction 
is taken into account. The intersections of the line a = 2b with the internal solid lines define 
the periodic solutions of eqns. (3) and (4). 

of intermediate size (which exist only during melting in benzene!) are able to 
rotate in an external alternating field. 

In the general case, the non-linear equation (2) also has a restricted 
number of clusters with resonant sizes. However, the variety of possible 
periodic motions appears in the non-linear case. Changing, say, the ampli- 
tude of an external field, one passes from the pendulum-like vibrations 
considered above to the hour-hand rotations with different periods. It is 
much easier, from the experimental point of view, to change the frequencies 
rather than the amplitudes of an external field which, however, corresponds 
to a simultaneous change of all the parameters. Moreover, in some region of 
the parameters, solutions of eqn. (2) become “chaotic”: a cluster sometimes 
rotates in one direction, suddenly reverses, stops and continues in the same 
or the reverse direction, and so on. 

All these peculiar theoretical predictions [2] might be seen experimentally 
on systems similar to those described above. So far, we have considered 
different objects in which magnetic (dielectric) moment appears in an 
external field. However, similar effects exist also for molecules (clusters) 
having permanent magnetic (electric) moments which are placed in an 
alternating external field. The drag torque M X F in eqn. (1) is now linear in 
the external field F, rather than quadratic as it was for the induced moment. 
Accordingly, the equation of motion (2) is now replaced by 

d29 /3 dt’ A4Fo cos wt 

z+EE+ 21 
sin e = 0 (5) 

For p = 0, eqn. (5) describes a conservative (Hamiltonian) system with 
two resonant terms, as can be seen by rewriting the oscillating field in eqn. 
(5) as being composed of two counter-rotating fields 

d28 MF, -= 
dt= 

41 [sin( ot - e) - sin( wt + e)] 
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A comprehensive numerical analysis of eqns. (5) and (6) has been per- 
formed [4] showing the large variety of different types of motion for 
different values of two dimensionless parameters p/Iw and MF,,/21w2. The 
simplest experimental set-up for this problem is a magnetic needle in an 
alternating magnetic field produced by two Hehnholtz coils. The chaotic 
motion of the needle was the main goal of the experiments [5]. In fact, this 
simple experiment should be an indispensible part of the undergraduate 
university course which contains explanations of the transition from order to 
chaos. 

The foregoing is related to mechanical systems or, one can say, to zero 
temperature. As is well known [6], the influence on the cluster of the 
molecules of a medium, of other clusters as well as of the thermal fluctua- 
tions, can be represented by a random force in equations of mechanics. We 
start here with the simplest case of the linearized undamped equation (3) 

(7) 

where the random function f( 7) is assumed to be Gaussian, zero-mean white 
noise, i.e. its properties are determined by 

(f(+r)) = 0 

the second moment 

(f(7)fQT’)) =DS(7-T’) 

One can easily include damping in our 

(8) 

analysis. However, the transition 
from the linear equations (7) and (3) to the non-linear equation (2) is 
considerably more complicated, and such an analysis is now in progress. 

The following two questions arise in connection with eqn. (7): (a) What 
drastic changes in kinetic behaviour of a mechanical system described by the 
noise-free Mathieu equation (3) (with p = 0) are necessarily reflected in the 
behaviour of the statistical variables e(t) of eqn. (7) that describe such 
systems in the presence of additive noise? (b) The noise-free undamped 
Mathieu equation has two characteristic frequencies. The first is that arising 
when b in eqn. (3) is equal to zero and is o = a’/‘, and the second is w = 2 
which arises from the cosine term. The question is whether these two 
characteristic mechanical frequencies will also manifest themselves in the 
statistical description of this system. 

A positive answer to the first question with all attendant analysis has been 
given elsewhere [6]; here, we answer the second question [7]. 

Using standard techniques [8], one can pass from the second-order 
differential equation (7) with a random force (the so-called Langevin equa- 
tion) to the correspondent Fokker-Planck equation for the joint density for 
the random variables P( 8, 8, 7) (where d = de/dt) 

i3P -= 
ar D$$ - 8% + [a - 2b cos(27)] 8% 



52 

with the initial conditions 

P(6, &o)=s(e-6,) s(B-e,) 00) 

We are only interested in the probability density for O( 7) which is found 
by integrating over b 

~(0, .,Ijm ~(8, & r) d8 
--oo 

We record here the final results of these 
expect, the distribution function p( 8, T) has a 

P@ 4 = (279,) -1’2 exp[ - (8 - 8)2/2e8s] 

where the mean value 8 satisfies the original . . 

01) 

calculations. As one would 
Gaussian form 

(12) 

noise-free Mathieu equation 

8 + [(a - 2b cos(27)]8 = 0 and the variance of O(T), oee( 7) = e2 - a2, is the 
solution of the equation 

$ + 4[ a - 2b cos(27)] 2 + [ 8b sin(2r)] a,, = 40 (13) 

We use the standard initial condition uee( 7 = 0) = 0. Then, the diffusion 
constant D can be scaled out of the problem, allowing us to set D = 1 in all 
of the calculations that follow. 

Equation (13) with D = 1 has been solved numerically. Let us consider 
several cases of results found for a& 7) to illustrate the qualitative be- 
haviour possible for different values of the parameters a and b. 

(1) a > 0, b = 0 
Since the time dependence disappears from the Mathieu equation, the 

resulting equation (13) is readily solved and uee( 7) is found to be 

e,,(r) = 
[2a112r - sin(2C2r)] 

2a312 

Thus, the variance increases 
modulating ripple. 

04) 

monotonically as a function of r with a 

(2) a = 0, b > 0 
When a = 0 only oscillations with w = 2 or with the period r exist in the 

original mechanical equation. One therefore expects that these oscillations 
will appear in some guise in a graph of ues( 7) plotted as a function of 7. 
This behaviour is evident from the curve in Fig. 2 which has been calculated 
for the case b = 1. The period 72 is indicated by the + signs in the figure, and 
the variance of 0( 7) has oscillatory behaviour with this periodicity. Notice 
that uee( Q-) decreases as a function of time for certain ranges of 7 corre- 
sponding to a sharpening of the Gaussian peak. This is somewhat counter- 
intuitive in that the variance should increase monotonically with time. As 
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Fig. 2. The function u&r) plotted on a semi-logarithmic scale 
b = 1. The + symbols in this and the following figures correspond 
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Fig. 3. The function u&r) plotted on a semi-logarithmic scale for a = 0, b = 16. Additional 
fine structure appears compared with Fig. 2. 
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Fig. 4. The function O&T) plotted on a semi-logarithmic scale for a =l, b = 0.5. 
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Fig. 5. The function U&T) plotted on a semi-logarithmic scale for a = 8, b = 0.5. The more 
monotonic behaviour can be seen in comparison with Fig. 4 since an increase of a 

corresponds to the approach to the case a x= b described by eqn. (14). 

the parameter b is increased, more fine structure appears in uee( 7) as shown 
in Fig. 3 for b = 16. 

(3)a>O, bfixed(=OS) 
Figure 4 shows the oscillatory behaviour for a = 1 while Fig. 5 for a = 8 

shows a decrease in the observed oscillations. This latter result might have 
been expected because in the limit a + co, the solution of ose( 7) approaches 
the prediction of eqn. (14). 

(4) b > 0, a positive and fixed ( = 0.5) 
Clearly an increase in b (b = 0.5 in Fig. 6 and b = 5 in Fig. 7) leads to 

more pronounced oscillations. 

0 

-2 

Fig. 6. 

a=0.5. b=0.5 

0 2 4 6 8 IO 
Tht? 

The function U&T) plotted on a semi-logarithmic scale for a = 0.5, b = 0.5. 
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a=0.5 b=5 

Fig. 7. The function a&r) plotted on a semi-logarithmic scale for a = 0.5, b = 5. A 
comparative increase in b similar to the decrease in II in Figs. 4 and 5 results in more 
pronounced oscillations of e&r). 

One concludes, therefore, that the period for time changes in the de- 
terministic behaviour of a dynamic system is reflected in the behaviour of 
the statistical variables that describe such a system in the presence of 
additive noise. It will be recalled that these results have been obtained from 
the linearized equation, although in the non-linear equations the statistical 
properties will be similar to the mechanical ones. 

We are looking forward to experimental verification of the suggested 
resonance phenomena. 
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